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Abstract

The DBaD Framework v2.0 formalizes the ethical principle “Don’t Be a Dick as a
measurable, computationally testable model of proportional decency. This expanded
edition provides a full literature context, mathematical derivation, survey methodology,
simulation design, and applied implications for AI alignment and social policy.

1. Introduction

Modern ethics remains fragmented by cultural bias and philosophical tribalism. The DBaD
Framework seeks a minimal rule of proportional empathy that can be empirically verified
across populations (Haidt 2012; MacIntyre 1981; Rawls 1971).

1.1 Why Existing Models Fail

Brief critiques of utilitarianism, deontology, and virtue ethics; motivation for a measurable
hybrid (Scanlon 1998; Floridi 2019).

2. Theoretical Framework

We define five normalized parameters H, C, I, P, T and derive a continuous Decency Score
E(A).

2.1 Derivation and Normalization

Let H, C, P, T ∈ [0, 1] and I ∈ [−1, 1]. Define

E(A) = wH(1 − H) + wCC + wI
(I + 1)

2 + wP P + wT T,
∑

i

wi = 1. (1)

Thresholds: E ≥ 0.80 ⇒ Ethical; 0.50 ≤ E < 0.80 ⇒ Borderline; E < 0.50 ⇒ Unethical.
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2.2 Weight Calibration and Uncertainty

3. The Universal Ethics Algorithm (UEA)

Algorithm pseudocode and computational analysis of E(A) evaluation.

def evaluate_action(H, C, I, P, T, weights):
wH, wC, wI, wP, wT = weights
E = wH*(1 - H) + wC*C + wI*((I + 1)/2) + wP*P + wT*T
if E >= 0.80: return E, "Ethical"
elif E >= 0.50: return E, "Borderline"
else: return E, "Unethical"
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3.1 Flowchart Representation

Proposed Action A

Predict net harm H
(0..1)

Autonomy/Consent C
(0..1)

Intent I
(-1..+1)

Proportionality P
(0..1)

Transparency T
(0..1)

Compute E(A)

Decision: Unethical Decision: Borderline Decision: Ethical

E(A) < 0.50 0.50 ≤ E(A) < 0.80 E(A) ≥ 0.80

Figure 1: Logical pathway of the Universal Ethics Algorithm.
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3.2 Illustrative Curve
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Figure 2: Illustrative relationships between E(A) and social metrics (demo).

4. Empirical Validation

4.1 Human Survey Design

Describe sample (n ≥ 1000), domains, metrics; reliability targets α ≥ 0.8 (Greene 2013).

4.2 Agent-Based Simulation

Define agents, iteration count, and metrics (Trust Index, Volatility, Stability, Efficiency)
(Axelrod 1984).

Table 1: Placeholder Table 1: Sample Simulation Metrics
Agent Type Trust Index Volatility Stability Efficiency
DBaD 0.91 0.12 0.88 0.84
Utilitarian 0.76 0.33 0.70 0.80
Egoist 0.41 0.65 0.43 0.78
Random 0.35 0.79 0.22 0.50
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5. Results and Illustrations

6. Discussion

Cross-cultural adaptation, AI alignment, policy implications (Russell and Norvig 2020; Floridi
2019).

7. Limitations and Future Work

Subjectivity, context sensitivity, and data limitations; plan for preregistration and open data.

8. Conclusion

The DBaD Framework v2.0 extends common decency into a testable scientific construct,
bridging moral philosophy, psychology, and computational ethics.

A. Appendix A — Full Algorithm Pseudocode

B. Appendix B — Survey Instrument

C. Appendix C — Mathematical Notes

C.1 Weight Normalization

Let raw nonnegative preference parameters be w̃H , w̃C , w̃I , w̃P , w̃T ≥ 0. We enforce ∑i wi = 1
via either

wi = w̃i∑
j w̃j

or a softmax wi = eβw̃i∑
j eβw̃j

, β > 0.

The softmax adds temperature β to control sharpness of preferences while preserving differ-
entiability.

C.2 Gradient and Sensitivity

Define E(A) = wH(1 − H) + wCC + wI
I+1

2 + wP P + wT T . The partial derivatives are

∂E

∂H
= −wH ,

∂E

∂C
= wC ,

∂E

∂I
= wI

2 ,
∂E

∂P
= wP ,

∂E

∂T
= wT .

Thus H decreases E (harm penalizes), while C, P, T increase E; I contributes symmetrically
around 0.
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C.3 Uncertainty Propagation

Assuming local independence and small uncertainties, first-order error propagation yields

Var[E] ≈
(

∂E

∂H

)2

Var[H] +
(

∂E

∂C

)2

Var[C] +
(

∂E

∂I

)2

Var[I] +
(

∂E

∂P

)2

Var[P ] +
(

∂E

∂T

)2

Var[T ].

Substituting the gradients,

Var[E] ≈ w2
H Var[H] + w2

C Var[C] +
(

wI

2

)2
Var[I] + w2

P Var[P ] + w2
T Var[T ].

If covariances are non-negligible, include cross terms 2 ∂E
∂xi

∂E
∂xj

Cov(xi, xj).

C.4 Threshold Confidence

Given an estimate Ê with variance V̂ar[E], an approximate z-score margin is

∆z ≈ zα

√
V̂ar[E].

Decision thresholds (e.g., 0.50 and 0.80) can be equipped with confidence bands (Ê ± ∆z) to
report uncertainty-aware classifications.
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